

Oil Pump and Motor Sets

Features

- Available with ODP or TEFC motors
- Factory assembled
- Capacities to 3200 gph

- Quiet operation
- · Long service life

Hauck's RP series pump and motor sets are factory assembled units designed to meet your specific volume, viscosity, and discharge pressure requirements. Each set combines a positive displacement rotary gear pump with a suitable 'T' frame industrial electric motor mounted on a steel base. The motor and pump are matched to ensure that the requirements of the application are met with maximum efficiency.

HAUCK MANUFACTURING COMPANY

P.O. Box 90 Lebanon, PA 17042 Phone: 717-272-3051 Fax: 717-273-9882 www.hauckburner.com

Combustion Excellence Since 1888

Hauck Manufacturing Company

RP

OIL PUMP AND MOTOR SETS

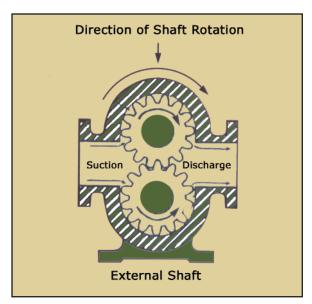
ADVANTAGES OF THE RP

Factory Assembled

Quiet Operation

Long Service Life

Construction


RP pump units consist of a pump, motor, direct coupling, and shaft and coupling guard (as required by OSHA standards) - all preassembled and mounted on a steel base.

The pump's helical herringbone gears are fabricated of high-alloy steel to provide quiet, pulse-free flow and prevent the trapping of liquids. All internal bearings are force-fed lubricated by the liquid passing through the pump. The drive shafts are made from hardened steel and ground to meet high quality control standards.

The electric motors are furnished by leading industrial motor manufacturers who maintain stringent inspection procedures to ensure long service life. The motors are available in two models; open, drip proof (ODP) and totally enclosed, fan cooled (TEFC).

Operation

The specific operational characteristics of each assembly will depend on the pump and motor selected. However, a pressure relief valve must be installed immediately downstream of the pump. This pressure relief valve (bypass valve) should be designed and adjusted to control and maintain the required pump discharge pressure of either 50, 100, or 150 psig.

Schematic representation of the pump showing the oil flow path.

Required Suction Head

A characteristic of each pump, determined by test or computation, is the required N.P.S.H (net positive suction head). It is the maximum amount of suction pressure* the pump can develop without cavitation to pull the oil into the pump. In other words, it is the maximum amount of suction pressure available to lift the oil, if required, and overcome pressure losses in the inlet piping to the pump.

The required N.P.S.H. varies with the pump design and pump size. The values listed in the table below refer to the pump sizes listed in the RP-2 (Capacities) product literature.

Required N.P.S.H

PUMP SIZE			VISCO	DSITY		
	40 SSU	90 SSU	400 SSU	2000 SSU	3000 SSU	10,000 SSU
1	6.3	6.5	6.8	7.5	7.8	8.8
2	6.5	6.8	7.3	8.0	8.0	9.5
3	7.5	7.8	9.0	10.0	10.3	12.0
4	7.5	7.8	9.0	10.0	10.3	12.0
5	8.5	8.8	9.5	10.8	11.5	15.0
6	8.5	8.8	9.5	10.8	11.5	15.0

^{*} In absolute pressure

CAPACITIES

RP OIL PUMP AND MOTOR SETS

SELECTION TABLES*

	TABLE 1 40 SSU VISCOSITY										
50	PSIG DISCHARGE PRESSURE		100 PSIG DISCHARGE PRESSURE								
GPH	MODEL NO.		GPH	MODEL NO.							
132	RP1-56-½-1200		102	RP1-56-1/2-1200							
204	RP1-56-½-1800		168	RP2-143-¾-1200							
240	RP2-56-1/2-1200		174	RP1-56-1/2-1800							
384	RP2-56-½-1800		336	RP2-143-1-1800							
582	RP3-143-¾-1200		450	RP3-182-1½-1200							
828	RP4-145-1-1200		756	RP4-184-2-1200							
948	RP3-145-1½-1800		840	RP3-145-2-1800							
1272	RP5-184-2-1200		1020	RP5-213-3-1200							
1416	RP4-145-1½-1800		1302	RP4-182-3-1800							
1920	RP6-184-2-1200		1680	RP6-213-3-1200							
2100	RP5-182-3-1800		1920	RP5-184-5-1800							
3060	RP6-184-5-1800		2808	RP6-184-5-1800							

TABLE 2									
	90 SSU - ·	- VI	SCOSI	TY					
50	PSIG DISCHARGE		100 PSIG DISCHARGE						
	PRESSURE		PRESSURE						
GPH	MODEL NO.		GPH	MODEL NO.					
168	RP1-56-½-1200		138	RP1-56-1/2-1200					
252	RP1-56-½-1800		222	RP1-56-1/2-1800					
354	RP2-56-1/2-1200		330	RP2-143-¾-1200					
528	RP2-56-½-1800		504	RP2-143-1-1800					
636	RP3-143-¾-1200		570	RP3-145-1-1200					
918	RP4-145-1-1200		846	RP4-182-1½-1200					
996	RP3-145-1½-1800		930	RP3-145-2-1800					
1416	RP5-184-2-1200		1266	RP3-213-3-1200					
1512	RP4-145-2-1800		1428	RP4-182-3-1800					
2010	RP6-213-3-1200		1812	RP6-215-5-1200					
2220	RP5-182-3-1800		2088	RP5-184-5-1800					
3192	RP6-184-5-1800		2988	RP6-213-7½-1800					

TABLE 3 2000 SSU VISCOSITY										
50 PSIG DISCHARGE PRESSURE			100	PSIG DISCHARGE PRESSURE		150 PSIG DISCHARGE PRESSURE				
GPH	MODEL NO.		GPH	MODEL NO.		GPH	MODEL NO.			
174	RP1-56-½-1200		162	RP1-56-½-1200		150	RP1-56-1/2-1200			
276	RP1-56-1/2-1800		258	RP1-56-1/2-1800		240	RP1-56-3/4-1800			
360	RP2-56-½-1200		348	RP2-143-¾-1200		336	RP2-145-1-1200			
588	RP2-143-1-1800		576	RP2-145-1½-1800		552	RP2-145-1½-1800			
678	RP3-145-1-1200		660	RP3-182-1½-1200		648	RP3-184-2-1200			
1050	RP4-182-1½-1200		1020	RP4-184-2-1200		960	RP4-213-3-1200			
1050	RP3-145-2-1800		1020	RP3-182-3-1800		966	RP3-145-3-1800			
1500	RP5-213-3-1200		1422	RP5-215-5-1200		1350	RP5-215-5-1200			
1620	RP4-182-3-1800		1572	RP4-184-5-1800		1530	RP4-184-5-1800			
2172	RP6-215-5-1200		2052	RP6-215-5-1200		1980	RP6-254-7½-1200			
2322	RP5-184-5-1800		2250	RP5-213-7½-1800		2172	RP5-213-7½-1800			
3270	3270 RP6-213-7½-1800		3180	RP6-213-7½-1800		3090	RP6-215-10-1800			

*All calculations are based on a 60 Hertz motor of 1200 or 1800 RPM. Horsepowers shown reflect recommended motor sizes and not actual horsepower consumed. Detailed pump/motor graphs are available on request.

SELECTION

The proper selection of a pump and motor assembly requires the consideration of many factors. Chief among these are:

- 1. desired discharge pressure
- 2. required peak capacity, and

1/91

3. the viscosity of the oil to be pumped.

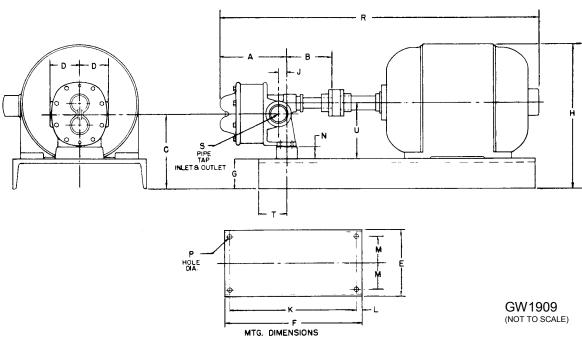
The final factor, the most important from a selection point of view, is often misunderstood or completely overlooked. It is a common misconception that "temperature" can be substituted for viscosity. To see why this is not the case, viscosity will be discussed in some detail.

The viscosity of a fluid is a measure of its internal resistance to flow. Seconds, Saybolt Universal (SSU) is a commonly used measure of viscosity. Using this scale, viscosity is expressed in terms of the number of seconds required for a specific amount of oil to flow through an orifice; hence, the larger the number in seconds (SSU), the higher the viscosity. The higher the viscosity, the more the oil approaches the solid state. The lower the viscosity, the more easily the oil flows. The viscosity of an oil can be altered by heating. Viscosity decreases with increases in temperature. When heavy oils are used, it is necessary to reduce the viscosity of the oil by raising the oil temperature.

(OVER)

In accordance with Hauck's commitment to Total Quality Improvement, Hauck reserves the right to change the specifications of products without prior notice.

When heating oil, even of the same grade, widely varying viscosities are obtained at the same temperature. For example, heating No. 6 oil to 125° will yield a viscosity in the range of 650 to 1250 SSU. This means that two samples of No. 6 oil (in two different deliveries for example) can vary in viscosity, at 125°, by 600 SSU – or more. Obviously, stating the grade of oil and its temperature is not enough to determine the viscosity, and viscosity is critical to the proper selection of a pump assembly. A viscometer or other suitable device should be used to determine the viscosity of the oil at the pump suction opening.


If oil temperature at the pump is expected to exceed 200°F, a <a href="https://high.google.com

The SELECTION TABLES on the previous page offer pump assemblies having a wide range of flow capacities, discharge pressures, and viscosity-handling capabilities. Tables 1-3 present various combinations of these 3 elements and the model number associated with each combination. If the table entries do not cover your particular application requirements, or if additional information is needed, detailed graphs of each pump are available upon request. Consult your local Hauck representative.

DIMENSIONS

RP OIL PUMP AND MOTOR SETS

MODEL NO.	RP1-56	RPI -143	RP2-56	RP2-143	RP2-145	RP2-182	RP3-143 8.4 - 143	RP3-145 8.4 -145	RP3-182 8.4 -182	RP3-184 8.4 - 184	RP3-213 8.4 -213	RP3-215 8.4 -215	RP5-182 8.6-182	RP5-184 8.6 -184	RP5-213 8.6 -213	RP5-215 8.6 -215	RP5-254 8.6-254	RP5-256 86-256	
SIZE PUMP	 - -	GA.		2-	-GA.		384-GA (SEE NOTE)							586-GA. (SEE NOTE)					
MOTOR FRAME	K56	143T	56	143T	145T	182T	143T	145T	182T	184T	2I3T	215T	182T	184T	21 3 T	2I5T	25 4 T	256T	
Α	3 7	3 -7	4#	4 1 6	4 	4#6	6	6	6	6	6	6	7 1	71/2	7 ½	7-1/2	7-2	7 2	
В	34	34	3 3	3 3	3 3	3 3	4 - 2					-	5 🛓					-	
С	5 <u>5</u> 6	5 <u>5</u>	5 7	5 7	$5\frac{7}{32}$	6 <u>19</u>	5 ½	5 ½	6 4	6 	7 3	7 3	6 3	6 <u>₹</u>	7 3	7 <u>3</u>	8 <u>11</u>	8 <u>11</u>	
D	<u>5</u> 0	18	2 - 8			_	$2\frac{3}{4}$	-				-	34		<u> </u>			-	
Ε	8	8	8	8	8	10	10	10	10	10	12	12	10	10	12	12	15	15	
F	19 ½	19 1/2	19 ½	19 ½	19 ½	23	23	23	23	23	26	26	23	23	26	26	31	3)	
G	24	_			_	2 5	2 5 8	2 <u>5</u>	2 5	2 5	3	3	2 5	2 5	3	3	3 3 8	3 3 8	
Н	9 	9남	9 	9 - 8	9 	1216	9 3	9 3	1115	1115	137	13-7	12 16	1216	13 7	13-78	16 7	16 7 16	
н*	9 8	9 3	9 <u>9</u>	9 3	9 3	12 3	10	10	124	124	4	14	12 3	12-3	14	14	16 ¹⁷ / ₃₂	16 <u>17</u>	
J	16	1 <u>1</u> 16	2			_	ŀ					-	7 8					-	
K	17 3	173			_	214	21 -1	214	214	21 -1	$23\frac{1}{2}$	$23\frac{1}{2}$	214	214	23 ½	23 ½	28 ½	28½	
L	7 8	<u>7</u> 8			_	<u>7</u> 8	7 8	7 8	7 8	7 8	14	14	7 8	7 8	11/4	1 4	14	14	
М	3	3	3	3	3	4	4	4	4	4	43/4	$4\frac{3}{4}$	4	4	434	4 3/4	6	6	
N	14	14	<u>5</u>	<u>5</u> 8	5 8	5	0	0	3	<u>3</u>	1 1/2	1 1/2	0	0	<u>5</u>	5 8	13	13/4	
Р	<u>5</u>	<u>5</u>	<u>5</u>	5	5/8	5	<u>5</u>	<u>5</u> 8	<u>5</u> 8	<u>5</u> 8	!	1	<u>5</u> 8	<u>5</u> 8	Ī	ı	- 1	1	
R	16 ₩	20 1	19 	21 -	21 -5 -	21 11 16	23 	23 	$23\frac{3}{4}$	25 🔓	27	28 -	$25\frac{7}{8}$	27 4	29 1 8	30 5	34	35 3	
R*	1816	20 <u>21</u>	19 5	21 31 32	21 31 32	234	24 3 2	24 32	25 5 16	26 16	29	30 	27 1 7	28 등	31 	32 §	36 5 16	38 	
S	1/2/	5	3 4	3 4	3 .	34	_ 1					>	1 1/2					>	
T	1 .7	1 7 8.	2 7 8	2 -7	2 7	27	2 7	2 7	2 7	2 7	34	34	2 7	2-7	2 7 8	2 7	2 7	2 7	
U	3 8	3 5	3 5	3 5	3 5	4 5	3 7	3급	4 5 8	4 5 8	$5\frac{3}{8}$	$5\frac{3}{8}$	$4\frac{3}{4}$	$4\frac{3}{4}$	5 3	5 3 8	6 ½	6 ½	

GX1909 (NOT TO SCALE)

In accordance with Hauck's commitment to Total Quality Improvement, Hauck reserves the right to change the specifications of products without prior notice.